Friday, December 7, 2018

Environmental Impact Of Economic Growth

Critics such as the Club of Rome argue that a narrow view of economic growth, combined with globalization, is creating a scenario where we could see a systemic collapse of our planet's natural resources.....



The marginal costs of a growing economy may gradually exceed the marginal benefits, however measured.
Concerns about negative environmental effects of growth have prompted some people to advocate lower levels of growth, or the abandoning of growth altogether. In academia, concepts like uneconomic growth, steady-state economy and degrowth have been developed in order to achieve this. In politics, green parties embrace the Global Greens Charter, recognizing that "... the dogma of economic growth at any cost and the excessive and wasteful use of natural resources without considering Earth's carrying capacity, are causing extreme deterioration in the environment and a massive extinction of species."

Those more optimistic about the environmental impacts of growth believe that, though localized environmental effects may occur, large-scale ecological effects are minor. The argument, as stated by commentator Julian Lincoln Simon, states that if these global-scale ecological effects exist, human ingenuity will find ways to adapt to them.

Global warming

Up to the present, there is a close correlation between economic growth and the rate of carbon dioxide emissions across nations, although there is also a considerable divergence in carbon intensity (carbon emissions per GDP).Up to the present, there is also a direct relation between global economic wealth and the rate of global emissions. The Stern Review notes that the prediction that, "Under business as usual, global emissions will be sufficient to propel greenhouse gas concentrations to over 550 ppm CO2 by 2050 and over 650–700 ppm by the end of this century is robust to a wide range of changes in model assumptions." The scientific consensus is that planetary ecosystem functioning without incurring dangerous risks requires stabilization at 450–550 ppm.

As a consequence, growth-oriented environmental economists propose government intervention into switching sources of energy production, favoring wind, solar, hydroelectric, and nuclear. This would largely confine use of fossil fuels to either domestic cooking needs (such as for kerosene burners) or where carbon capture and storage technology can be cost-effective and reliable. The Stern Review, published by the United Kingdom Government in 2006, concluded that an investment of 1% of GDP (later changed to 2%) would be sufficient to avoid the worst effects of climate change, and that failure to do so could risk climate-related costs equal to 20% of GDP. Because carbon capture and storage are as yet widely unproven, and its long term effectiveness (such as in containing carbon dioxide 'leaks') unknown, and because of current costs of alternative fuels, these policy responses largely rest on faith of technological change.

British conservative politician and journalist Nigel Lawson has deemed carbon emission trading an 'inefficient system of rationing'. Instead, he favours carbon taxes to make full use of the efficiency of the market. However, in order to avoid the migration of energy-intensive industries, the whole world should impose such a tax, not just Britain, Lawson pointed out. There is no point in taking the lead if nobody follows suit.

Resource substitution

Many earlier predictions of resource depletion, such as Thomas Malthus' 1798 predictions about approaching famines in Europe, The Population Bomb (1968), and the Simon–Ehrlich wager (1980)have not materialized. Diminished production of most resources has not occurred so far, one reason being that advancements in technology and science have allowed some previously unavailable resources to be produced. In some cases, substitution of more abundant materials, such as plastics for cast metals, lowered growth of usage for some metals. In the case of the limited resource of land, famine was relieved firstly by the revolution in transportation caused by railroads and steam ships, and later by the Green Revolution and chemical fertilizers, especially the Haber process for ammonia synthesis.

Declining resource quality

Resource quality is composed of a variety of factors including ore grades, location, altitude above or below sea level, proximity to railroads, highways, water supply and climate. These factors affect the capital and operating cost of extracting resources. In the case of minerals, lower grades of mineral resources are being extracted, requiring higher inputs of capital and energy for both extraction and processing. Copper ore grades have declined significantly over the last century. Another example is natural gas from shale and other low permeability rock, which can be developed with much higher inputs of energy, capital, and materials than conventional gas in previous decades. Offshore oil and gas have exponentially increased cost as water depth increases.

No comments:

Post a Comment